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The behaviour of the energy in a steep solitary wave as a function of the wave height 
has a direct bearing on the breaking of solitary waves on a gently shoaling beach. Here 
it is shown that the speed, energy and momentum of a steep solitary wave in water of 
finite depth all behave in an oscillatory manner as functions of the wave height and as 
the limiting height is approached. Asymptotic formulae for these and other wave 
parameters are derived by means of a theory for the ‘almost-highest wave’ similar to 
that formulated previously for periodic waves in deep water (Longuet-Higgins & Fox 
1977, 1978). It is demonstrated that the theory fits very precisely some recent 
calculations of solitary waves by Tanaka (1995). 

1. Introduction 
The study of steep solitary waves in a homogeneous fluid of uniform depth has had 

an interesting history, stimulated in part by its application to the breaking of ocean 
waves in shallow water. Early calculations of the highest solitary wave, including those 
by Yamada (1957), Lenau (1966) and Witting (1975), have been summarized in a 
review paper by Miles (1980, $4). Probably the most accurate calculation was later 
carried out by Williams (1981) whose numerical results have been confirmed to at least 
five places of decimals by Evans & Dorr (1991). 

The most interesting theoretical results, however, concern the behaviour of a solitary 
wave at wave heights slightly less than the maximum. For many years it was generally 
assumed that the speed and energy of a solitary wave in a given depth of water would 
increase monotonically with the wave height. However, in 1974 it was discovered that 
many integral properties of solitary waves, including their speed and energy, attain 
maxima at wave heights less than that of the limiting wave (Longuet-Higgins & Fenton 
1974). These authors used a series expansion with convergence accelerated by Pad6 
approximants. Their conclusion was later confirmed by an independent calculation 
using an integral equation (Byatt-Smith & Longuet-Higgins 1976). The latter also gave 
a physical explanation for the phenomenon. Meanwhile similar results were noted for 
periodic irrotational waves in water of infinite depth (Longuet-Higgins 1975). 

All the above calculations experienced difficulties for waves close to the limiting 
steepness. A significant advance came with the introduction of a theory for the ‘almost- 
highest’ wave by Longuet-Higgins & Fox (1977, 1978, referred to herein as LHFl and 
LHF2). In LHFl it was shown that any steady irrotational wave having a small radius 
of curvature R (not zero) at the crest would possess an asymptotic form of flow near 
the crest whose lengthscale was proportional to R. Moreover, this limiting ‘inner 
solution’ contained oscillatory terms which became small at distances from the crest 
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that were large compared to R. This accounted for the fact that surface slopes slightly 
greater than 30" had been found in numerical calculations of steep, steady waves. 
Moreover, when the 'inner solution' was matched asymptotically to the rest of a 
periodic wave, as in LHF2, explicit formulae were found for the integral properties 
which displayed an oscillatory behaviour. These showed that the wave energy, for 
example, should have not only a single maximum but an infinite sequence of stationary 
values - alternating maxima and minima ~ at wave heights close to the limiting height. 

In LHF2 the calculations were given in detail only for periodic waves in deep water, 
although it is evident from that paper that similar calculations were possible in 
principle for other types of Stokes waves, including waves of solitary type. In fact such 
calculations were already contained in the PhD thesis by Fox (1977). These, however, 
were not published, and meanwhile the existence of a second stationary value (or first 
minimum) for each of the integral quantities was rediscovered by Evans & Dorr (1991) 
using a different integral equation to that derived by previous authors. 

Interest in these results was further enhanced by the demonstration by Tanaka 
(1986) that a solitary wave first becomes unstable at the critical value of the wave height 
corresponding to the first energy maximum. This result was to be anticipated from a 
corresponding conclusion for periodic waves (Tanaka 1983 ; Saffman 1985). The 
nonlinear development of this instability has been shown to lead directly to wave 
breaking, if the initial distance is of one particular sign; if it is of the opposite sign the 
wave undergoes a transition to a lower (stable) solitary wave having almost the same 
energy?. To conserve both energy and momentum a small solitary wave is shed into the 
'tail' (see Tanaka et al. 1987). 

Recently Tanaka (1995) has investigated the possibility of a second mode of 
instability occurring at the second stationary value (or first minimum) of the energy in 
a solitary wave. Details of these calculations are given by Longuet-Higgins & Tanaka 
(1996). To confirm the calculations we propose in the present paper to provide an 
account of the asymptotic theory for the almost-highest wave which was given in Fox 
(1977) but not previously published. The calculations are slightly modified so as to take 
account of the more recent results of Williams (1981). 

The plan of the paper is as follows. Basically the approach is to work downwards 
from the highest wave, as in LHFl and LHF2. In $2, therefore, we first present a 
calculation of the highest solitary wave. Then in $ 3  we describe the general method for 
matching the flow at the crest of an almost-highest wave to the flow in the rest of the 
wave. This involves making a first correction to the outer flow, which is done in $4, 
resulting in the asymptotic expressions for the phase speed, energy and momentum 
which are stated in $5. The constants in these asymptotic expressions are, however, 
valid only to one significant figure. In $6, an examination of Tanaka's (1995) data 
shows that the latter conform very closely to the asymptotic forms found in $5. By 
fitting the formulae to the data, the appropriate constants are obtained to at least two 
significant figures. The resulting expressions give the second and third stationary values 
of the energy and other wave properties to a high degree of accuracy. 

2. The highest solitary wave 
In this Section we carry out the initial step, namely the calculation of the highest 

solitary wave, having a 120" angle at the crest. We here use a method similar to that 

t A somewhat similar interpretation of the observed intermittency in spilling breakers was given 
by Longuet-Higgins (1976). 
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FIGURE 1. The highest solitary wave: (a) physical plane, (b) plane of x = $+iyF, (c) plane of 5. 

of Lenau (1966), which will introduce the basic transformations needed later for the 
calculation of the almost-highest wave. 

Let us choose units of mass, length and time so that the density p, gravitational 
acceleration g and undisturbed depth of water D are all equal to unity. The wave 
travels to the left with speed c. We take axes moving with the wave speed, with the x- 
axis vertically downwards and the y-axis horizontally to the right (see figure 1 a), and 
write z for the complex space coordinate (x + iy). It is convenient to continue the flow 
analytically across the bottom to give a reflection of the physical wave. The condition 
to be satisfied on the reflection of the free surface will then be similar to that on the 
original free surface, but with the direction of gravity reversed. 



4 M.  S .  Longuet-Higgins and M .  J .  H. Fox 

Writing x = #+i$ for the complex velocity potential, we may map the flow region 

- o o < $ 5 < o o ,  -2c<$.<O (2.1) 

(see figure 1 b) onto a circle in the <-plane by the transformation 

2ci x = -(<- 1) + O(<- 1)2, <+ + 1, 
Tt 

x=-2ci  1--(<+l) +0(<+1)2, <+-1 [ :  1 i 

or 

(2.4) 

exp (7tx/2c) + i 
exp (xx/2c) - i 

< = - i  

exP(7tX/2c) - %-i), 6-i, 1 
exp (- xx/2c) - ;(<+ i), <+ - i j 

far to the left and right of the crest. 
At infinity the flow tends to the uniform stream: 

z - %+constant, #+* oo, 
C 

while near the crest and its reflection we have the Stokes corner flows 

(2.7) I z - (3x)'l3, 
z - 2(H+ 1) - (3c-$ i~)~/~ ,  x+-2ic. 

x + 0, 

Hence from equations (2.4) we see that 

(2.8) 
z-iX/c+H(<-l) 

must be finite on the free surface and analytic when 1<1 < 1. So this function will have 
a power series expansion about < = 0 which we assume to converge absolutely and 
uniformly when 161 < 1. 

However, in practice the convergence is rather slow in this case, and it is advisable 
to include explicitly the next terms in the asymptotic forms as $5 + & oo or x+O or 
-2ic. Thus from LHFl we have 

(1 - ( 3 2 1 3  

z - ( 3 ~ ) ~ ' ~  + B ( i ~ ) - l / ~ - ~ ,  (2.9) 

where B is a constant and h is the largest root of the transcendental equation 

7th 7th 7t 

2 2 22/3 
-tan- = - (2.10) 
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such that h < - 1, that is to say h = - 1.8027. So from equations (2.4) we take 

(2.1 1) 

and a similar expression for z as [+ - 1. On the other hand as 4 --f & 00 we know from 
Lamb (1932, $250) that 

iX z N -+constant + iCexp [ f m( x/c + i)], 
C 

where C is a constant and m is the smallest positive root of 

So from equations (2.5) we have 

mP1 tan m = c2. 

iX z N -+constant + iC'([+ i)2m/n e-im 
C 

as [+--i, and similarly as [+i. Thus altogether we write 

(5  1 z = --H(C- iX 1)-5(1 -[2) -+$I 
C 

+ (1 - 52)~/3[[c"5(1+ g y / a  + ~ ' g i  - ~ 2 ) - 1 - n  

+(a, g+a, g3 +a2 c5 + ...)I. 

= z*(5), 

Symmetry about a vertical line through the wave crest crest requires that 

while the absence of even powers of [ in the power series ensures that 

z( - <*) = 2(H+ 1) -z*(C), 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

which is the condition for symmetry about the bottom x = H+ 1. The constant B' is 
related to the constant B of equation (2.9) by 

1/3+h 

B = B(;)  (2.18) 

We can now derive from equation (2.15) an expression for dz/dX and substitute in the 
Bernoulli equation for constant pressure at the free surface, which may be written 

(z+z*)- - = 1 
dX dz (dz)* dX 

(2.19) 

to be satisfied on 161 = 1, Re (0  > 0. Its reflected form is to be satisfied on 14 = 1, 
Re(0 < 0, but because of the complete symmetry of the problem about Re([) = 0 it is 
sufficient to require only that (2.19) be satisfied on the appropriate half-circumference ; 
the reflected condition will then be satisfied automatically. So having introduced the 
reflected wave for the purpose of constructing the power series in (2.15) we now 
progress to a representation in which the physical free surface corresponds to the whole 
circumference of the unit circle by writing 

We can express [ = w1I2 as a Fourier series in arg (0) on the free surface IwI = 1 where 

w = [2. (2.20) 

we define 
- < arg(w1l2) < :n. (2.21) 
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2 Re ( z )  = ( 1  - w)2/3 d ( w )  + c.c., 

d(o) = ~ ( 1 -  w ) 1 / 3 ( 1 +  w l / z ) - l  - wl/yi - 4 1 1 3  

(2.22) 

+ w1/2[B’(  1 - w)-l-“+ C”( 1 + w)2m/n + (a,, +a, w + . . .)] (2.23) 

and on differentiating (2.15) with the use of the relations (2.2) and (2.3) we obtain 

(2.24) 
dz -ic- = (1 - ~ ) - 1 / 3 9 j  ( w 1, 
dX 

where 

g ( w )  = ( 1  - 4 1 / 3 +  

- ( 1  -go) {B’( 1 - w)-l-’ + C”( 1 + w)2m/n + (a,, + a, w + . . .)} 
2rn 

( A  + 1 )  B’( 1 - w)-2-A + - C”( 1 + w)2m/n-1 
Tt 

+( a,+2a2w2+3a3w3+ ...) (2.25) 

Substitution in equation (2.19) gives 

(- w)1/3 d ( w )  B ( w )  B(w-1) + C.C. = c2 (2.26) 

on IwI = 1 ,  larg (- w)ll31 < 4 3 .  
On truncating the power series in w after ( N -  5 )  terms we then have N unknowns: 

c2,  H ,  rn, B ,  C”, a,, a, ..., aN-6 (2.27) 

to determine. We therefore require N equations relating the unknowns. We may take 
these to be (i) 

H = Lc2 (2.28) 

which ensures that the free-surface condition is satisfied far from the crest; (ii) equation 
(2.13) ; (iii) a condition to ensure that the power series (a, + a, w + - - ) is o(1- w)-’-l 
as o + 1 ,  so that all the first-order asymptotic behaviour near the crest is included in 
the term B’C(1 -C2)-A-1 in equation (2.15). This condition (see Appendix A) is 

(iv) a similar condition on the asymptotic behaviour far from the crest, that is 

(1 + :H) -; 2-113 [ T - A B ’  +(a, - a, + a2 - . ..)I 

+ ,‘/’[(A + 1 )  2-2-AB’ +(a, - 2a, + 3a2 - . . .)] = 0; (2.30) 

(v) the (N-4 )  equations obtained by equating the coefficients of the highest (N-4 )  
powers of w in (2.26). 

The system of nonlinear equations was solved as described in LHF1 for the highest 
deep-water wave. The results for c2, together with the proportional error obtained 
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N-312 

FIGURE 2. The highest solitary wave - plot of c2 against N-3’2. 

Percentage error in 
free-surface condition 

N C2 Maximum Average 

20 1.66475 4.0 0.08 
20 1.665 83 1.8 0.03 
60 1.66609 1.3 0.02 
80 1.66620 1.1 0.15 

100 1.66627 0.9 0.01 

TABLE 1. Values of c2, for different values of N ,  and the proportional error in the free-surface 
condition, for the limiting solitary wave 

n an n a n  n a n  

0 0.6453 7 -0.0020 14 - 0.000 1 
1 -0.1813 8 - 0.0007 15 -0.0003 
2 -0.0125 9 -0.0011 16 0.0001 
3 -0.0154 10 -0.0004 17 - 0.0002 
4 - 0.0034 11 - 0.0006 18 0.0000 
5 - 0.0046 12 - 0.0002 19 -0.0001 
6 -0.0015 13 -0.0004 

B = 0.1147, C‘ = 0.1929, rn = 1.0525 

TABLE 2. Values of B ,  C’ and m and of the coefficients a, to a,, for the case N = 60 

when the computed values of z and dz/dX were substituted in the free-surface 
condition, are shown in table 1. Although convergence is slower than in the deep-water 
case, nevertheless c2 appears to be converging to the value 1.666. Figure 2, in which c2 
is plotted against N-’”, suggests that the values can be extrapolated linearly to give 
c2 = 1.6664. This agrees to four decimal places with later result c2 = 1.666 39(4) given by 
Williams (1981) which is believed to be accurate to at least five decimal places. 

Table 2 shows the values obtained for the first 20 coefficients ai, as well as B’, C’ and 
m for the case N = 60. 
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Fox (1977) Williams (198 1) 

Phase-speed c 1.2909 1.290 89 
Wave height H 0.8332 0.83320 
Mass M 1.968 1.970 32 
Impulse Z 2.540 2.54346 
Potential energy V 0.437 0.43767 
Kinetic energy T 0.534 0.53501 
Total energy E 0.971 0.972 68 

TABLE 3. Integral properties of the highest solitary wave as computed in $2, 
and as given by Williams (1981) 

The numerical values of c and other integral quantities associated with the highest 
wave are shown in table 3. The method of derivation is given below in $5. Comparison 
with the definitive results of Williams (1981) shows that apart from the wave height H 
which is directly related to c2, the other quantities were accurate to about three decimal 
places. 

3. The almost-highest wave : matching procedure 
The theory for the almost-highest solitary wave proceeds on precisely similar lines 

to the theory for deep-water waves, as given in LHF2. Thus we define a small 
parameter c by 

where q denotes the particle speed at the crest of the wave in the reference frame 
moving with the phase speed c, and cl denotes the linear phase speed, in this case 

e2 = q2/(2c,2), (3.1) 

c,2=gD= 1, (3.2) 
with our choice of units. The flow is divided into three zones, as in figure 3: an inner 
zone I of radius O(e2) centred on the wave crest, in which typical lengths are of order 
e2 and typical velocities are O(e); an intermediate zone I1 where typical lengths and 
velocities are of order c and el/’ respectively; and an outer zone I11 where lengths and 
velocities are of order unity, in our system. Thus in zone I we have 

z = 2 Z I ,  x = E X I ,  (3.3) 

where z1 and x1 are of order unity. The solution zl(xl) is the lowest-order inner solution 
for the almost-highest wave, which was calculated in LHFl. From that paper we know 
that, for large values of xl, z1 has the form 

where 

C is a constant and ,u is the positive root of 

(3.4) 

(3.5) 

(3.6) 

that is ,u = 0.7143 ... . 

has the form 
On the other hand we have seen that in the outer zone I11 the highest wave (e = 0) 

z GC ( 3 ~ ) ’ / ~  [ 1 + y(ix)-”-l], (3.7) 
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FIGURE 3. The almost-highest solitary wave - sketch showing regions of validity for the inner 
solution (zone I), the outer solution (zone 111) and for matching the two solutions (zone 11). 

where y is a constant. We now assume that in the matching zone I1 both the inner 
asymptotic expansion, of which (3.4) is the lowest-order term, and the outer asymptotic 
expansion, of which (3.7) is the lowest term, are valid. So the appropriate asymptotic 
form in zone I1 as e+O must contain all the terms of (3.4) and (3.7). That is, if we write 

z = €ZII, x = E3/2XII, (3.8) 

(3.9) 
then 

Hence to the lowest-order outer solution we must add a correction term corresponding 
to the last expression in (3.9). In terms of the appropriate variables z and x this will 
have the asymptotic form 

z’ ~~3(l+ip)(i~)-1/3-ig + . .  (3.10) 

Similarly a correction z; must be made to the inner flow z ,  having the form 

zII - (i!ixII)2/3 + Be-3(1-/\)/2(iXII)-1/3-h + [ ~ € 3 ( l + i g ) / 2 ( i ~ ~ ~ ) - 1 / 3 - i g  +c.c.]. 

ZI  ’ - B€-3(l+/\)(iXI)-1/3-h. (3.11) 

4. The correction to the outer flow 
The lowest-order corrections to the phase speed, momentum and other integral 

quantities of the solitary wave will come from the lowest-order corrections to the outer 
flow. Hence for small but positive e we write in general 

z = zo(ix) + [ ~ ~ ( l + ~ g ) ( i  - 62)-1/3-ifi(d0 <+ d, l3 + . . .) +c.c.], 

c2 = c; + [€3(l+iP)c; + C.C.], 

(4.1) 
where zo(ix) is the solution given in $2 and the coefficients d, are complex in general. 
We must also take 

(4.2) 

0 

I (H+ €2) = Ho + [€3(l+iWl + C.C.], 

C” = Cg+[€3(l+ig)C;+C.C.]. 
m = m 0 + + c.c.], 

Lastly B’ is defined to be equal to its lowest-order value Bh, any change in the 
asymptotic behaviour as <+ & 1 being absorbed in the correction power series in (4.1). 

Then, modifying (2.22) we have 

2 Re(z) = (1 - w)’l3 d ( w )  + 

where d ( w )  is the lowest-order expression defined in $2, 

1 - w)-ll3 (27 w 

(1 - w)-1/3 (27 * ( 0 )+c.c., (4.3) + c3(1-ig) 

“ (w)  = (1 - W ) - ” W ’ ~ ~ ( ~ ~  + d, w + . . .) - H,[(w”~ - 1) + &P2( 1 - w)]  (1 - w)ll3 

2 + w ’ / ~ (  1 - w )  (1 + w)2mo/n Cy + - d 2 (  1 - w )  (1 + w)2mo/n In (1 + o) Ci  m,, (4.4) 
77 
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n dn 
0 0.601 -0.421i 
1 -0.475 +0.442i 
2 0.033 +0.059i 
3 0.075 + 0.045 
4 0.034 + 0.006i 
5 0.033 -0.007i 
6 0.01 5 - 0.01Oi 
7 0.013-0.012i 
8 0.005-0.01 l i  
9 0.004 - 0.01Oi 

cf = - 0.259 - 1.072i, 
H ,  = -0.130-0.536i, 

n dn 

10 0.000 -0.009i 
11 0.000 -0.00% 
12 - 0.002 - 0.006i 
13 - 0.002 - 0.006i 
14 -0.003 -0.005i 
15 -0.003 -0.004i 
16 -0.003 -0.003i 
17 - 0.003 - 0.003i 
18 - 0.002 - 0.002i 
19 -0.003 -0.002i 

in, = - 0.1 13 - 0.4681 
c; = -0.190+0.123i 

TABLE 4. Values of cf, H,, C ;  and m, and of the coefficients do to d,, in the series for the first 
correction to the solitary wave, for the case N = 60 

and %*(w)  = [%(w*)]*. 

Differentiating, we obtain 

(4.5) 

(1 - u ) - 4 / 3 9 *  ( 0 >, (4.6) 

where B(u) is defined in $2 and 9(u) is the expression given in Appendix B. We now 
substitute (4.3) and (4.6) in the free-surface condition (2.19) and collect terms involving 
~ ~ ( " ~ f l ) .  These give 

(4.7) 
on IuI = 1, where 

dz 
- ic - = (1 - w)-113 g(u) + €3(1+i/c)( 1 - u)-413 9(,) - € 3 ( 1 - i ~ )  

dX 

F(0) + F(u-1) = c;( 1 - u) (- 0 ) 1 / 2 ,  

P"() = (- w ) 5 / 6 d ( u )  9 q W )  2qw-1) 

+ (- w ) ~ / ~  d ( ~ )  g(0-l) 9(0) - (- w)-'" %(w) g ( ~ )  g(0-l). (4.8) 
The N complex unknowns 

c y 7  rnl> ':> d 1 7  ' " 1  d,?-5> (4.9) 

are then determined by N complex linear equations as follows. From the first-order 
correction to (2.28) and (2.13) we have 

Hl = 1c2 2 1  (4.10) 

(4.1 1) and 

From the matching condition (3.9) we have 

m, c; = (sec' rn, - ci) rn,. 

do + dl + d, + . . . + dNP5 = A ( c , / x ) - ~ ' ~ - ' ~  (4.12) 

and corresponding to equation (2.30) we have 

2-113-i~ [ -g+f($+i,u)] (do - dl + d, - . . .) + 2-1/3-iP(d1 -2d, + 3 4  - . . .) +:H, = 0 

Lastly we equate the first (N-4) Fourier coefficients on each side of (4.7). 
The above equations were solved for the case N = 60 using the values of 

(4.13) 

4, H,, m, B', G7 a,, . . ., a54 (4.14) 

determined in $2 for N = 60. Table 4 shows the values of the unknowns as obtained. 
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5. Formulae for integral quantities 
From our numerical results, the first of equations (4.2) becomes, in real terms, 

c2 = c: + 2 . 2 ~ ~  cos (2.143 In c -  1 .8), (5.1) 

the remainder being of order e4. It follows immediately from equation (3.1) and 
Bernoulli’s equation 

H = - 4’) (5.2) 

that H+e2 = Ho+l.lc3~~~(2.1431nc-1.8). (5.3) 

The excess mass M is defined by 

cc 

(H+e2-x)dy = Mo+M, = s,: (5.4) 

say, where x is measured from the Bernoulli zero-velocity level, not the crest, and 

(5.5) 

and zo denotes the solution in 93. An overbar denotes the complex conjugate. For M ,  
we have, to lowest order in c, 

where 

(see equation (4.1)) and zT denotes the complex conjugate function of ix (or w),  i.e. 

z1 = (1 - 52)-1’3-ip(do 6+ d, 5 3  + . . .) (5.7) 

zT(ix) = z,(%). ( 5 . 8 )  

After evaluating the integrals in (5.6) we obtain finally (after correcting a sign in Fox 
1977) 

M = Mo+4.0e3cos(2.1431ne-2.6). (5.9) 

The impulse, or excess momentum, of the solitary wave is now easily obtained from 
Starr’s (1947) relation 

I = cM. (5.10) 

Thus on multiplying the right-hand sides of (5.1) and (5.9) and neglecting terms of 
order c4 or higher we have 

I = Io+6.4c3cos(2.1431nc-2.4). (5.11) 

Likewise the potential energy V can be found from the relation 

3V= (2-1)M (5.12) 

(see Starr 1947; Longuet-Higgins 1974), to give 

V = V, + 2.1 e3 cos (2.143 In c-  2.1). (5.13) 
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The kinetic energy T can most conveniently be calculated from 

2T = c(I--r) ,  (5.14) 

where r is the 'circulation' (see McCowan 1891 ; Longuet-Higgins 1974) defined by 

r= [+C~I-" , .  
This yields 

Lastly the total energy 
T = T,+2.2c3cos(2.143lnc-2.0). 

E = T + V  

(5.15) 

(5.16) 

(5.17) 

is given by E = Eo+4.3c3cos(2.1431nc-2.0). (5.18) 

However, because of the slow convergence of the coefficients d, in table 4, the last 
decimal place in each of the above amplitude and phase constants must be considered 
as uncertain. 

6. Discussion 

c, E, etc. found in $5. For example if 
Let us denote by Ac, AE, etc. the coefficients of e3 in the asymptotic expansions of 

= c o + ~ s 3 C O S ( 2 . i 4 3 1 n ~ - - ~ + ~ ( e 4 ) ,  (6.1) 

we write AeiB = Ac (6.2) 

Ac' = 2c0 AC (6.3) 

and AH = c0 AC (6.4) 

and similarly for the other quantities, then it is immediately apparent that 

precisely. Also by differentiation of equations (5.10) and (5.12) we obtain the exact 
relations 

A I =  MoAc+c0AM (6.5) 

and 3AV= ~ M , c , A c + ( c ~ - ~ ) A M .  (6.6) 

dL = Tdc2/c2, (6.7) 

A further condition, not yet used, is derived from the differential relation 

where L denotes the Lagrangian (T- V) ; see Longuet-Higgins (1974) equation (D"). 
From this we obtain 

AL = (2T,/c0) AC (6.8) 

with 

Lastly 

AL = AT- AV. 

A E  = AT+ AV, 
(6.9) 

(6.10) 

where E is the total energy. Thus we have seven relations, (6.3>-(6.6) and (6.8)-(6.10) 
connecting the nine complex quantities Ac, Ac2, AH; AM, AI; A V, AT, AL and AE. For 
the present we leave out of account the relation for AT derived from equation (5.14). 

From equations (6.8) and (6.9) and the calculated values of T, and co from table 3 
it becomes apparent that the numerical values for AT and A V  quoted in $5 cannot be 
valid to more than one significant figure. However, an opportunity to improve the 
accuracy of all the constants came with the presentation by Tanaka (1995; Longuet- 
Higgins & Tanaka 1996) of a table of values for c, H, I and E calculated by an 
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-1 
-4 -3 -2 -1 

In E 

-4 -3 -2 -1 
In E 

FIGURE 4. (a) Plot of (c-c0)/s3 versus Ins. (b) plot of (E-E,,)/s2 versus lna; x , Data from 
Tanaka (1995). The sine-curve is fitted to the data. 

-4 -3 -2 -1 
In E 

-10 ' I '  I '  ' I '  " ' " 

-4 -3 -2 -1 
In E 

FIGURE 5. (a) Plot of ( H + e 2 - H a ) / ~ 3  versus Ins; x denotes d, from Tanaka (1995). The sine-curve 
is from equation (6.3). (b) Plot of (Z-Z,,)/s3 versus Ins; x data from Tanaka (1995). The sine-curve 
is from equation (6.5), etc. 

independent method - essentially a refinement of the integral equation technique used 
in Tanaka (1986). In figure 4(a) we plotted the quantity (c-c0)/e3 against In€, where 
c is taken from Tanaka's data, c, has the value 1.29089 given by Williams (see table 
3 above) and the abscissa is In e. According 9 5 we would expect this to yield a sine-wave 
of radian frequency 2.143. In figure 4 we have fitted the curve 

f, = 0.688 cos (0- 1.90), (6.11) 

where 0 = 2.143111~. (6.12) 

Apart from the smallest values of E which are affected by rounding errors, the fit is 
excellent, confirming the general theory of &3 and 4 of the present paper. Figure 4(b)  
is a similar display for the total energy E, the data being fitted by the sine-curve 

f E  = 4.530~0~(8-2.21). (6.13) 
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In order to compute the remaining amplitude and phase constants and to check the 
accuracy of Tanaka’s data we proceeded as follows. AH and Ac2 were first derived from 
equations (6.3) and (6.4). Then equation (6.8) gave AL. The combination 

AE-AL = 2AV (6.14) 

of equations (6.9) and (6.10) gave AV and 

AE+AL = 2AT (6.15) 

gave AT. Then AM was found from (6.6) and AI from (6.7). This sequence was adopted 
in order to minimize the effect of errors in fitting a curve to AI, which has the largest 
amplitude. The resulting calculation gave the curves for y ,  and y ,  which are shown in 
figures 5(a) and 5(b) respectively. (These were not fitted to the corresponding data.) 

The agreement seen in figures 5 (a) and 5 (b) is convincing and allows us to state with 
confidence the following set of numerical values : 

and 

AC = 0.69 cos (0- 1.90), 

A C ~  = 1.78 COS (0 - 1 .go), 

AM = 4.44 cos (e- 2.681, 

A H =  0.89~0~(0-1.90);]  

AI = 6.77~0~(~9-2.53); 

AV = ~ . o o c o s ( B - ~ . ~ ~ ) ,  

AT = 2.54~0~(e-2.18), 

AL = O . ~ ~ C O S ( B -  1.90). 

AE = 4.53~0~(0-2.21),  

(6.16) 

(6.17) 

(6.18) 

The nine vectors are shown in the complex plane in figure 6. For clarity we have 
omitted the prefix A. The origin is indicated by 0 and arrows indicate parallel lines. 
Note that IM is not parallel to ET. 

Any two non-parallel vectors in figure 6 may be taken as base vectors and then all 
of the other vectors may be expressed in terms of them. For instance if Ac and AM 
are chosen as base vectors, then the situation is as shown in figure 7. 

Finally we have evaluated the complete asymptotic expressions for c, H, M ,  I and 
E and have plotted them in figure 8 (a-e). The abscissa in each diagram is chosen to be 
the parameter 

T /  = 1 -qZ/gD = 1-22 (6.19) 

introduced by Longuet-Higgins & Fenton (1994), where it is denoted by w. This 
parameter has the advantage that it runs from 0 to 1 precisely throughout the range 
of solitary waves, 71 = 0 corresponding to zero amplitude and 7 = 1 to waves of limiting 
height. In figure 8 (a, b, d, e) we have also plotted the values of C, H ,  I and E computed 
by Tanaka (1995). Finally in figures 9(a) and 9(b) we show enlarged plots of c and E 
close to the steepest wave. 

As pointed out in 5 1, particular interest attaches to the turning points of the total 
energy E since, as shown by Tanaka (1986, 1995), the first and second turning points 
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FIGURE 6. Relationship of the coefficients Ac, Ac2, A H ;  AM,  AI;  AV, AT,  AE and AL, in the 
complex plane. For clarity the prefixes A are omitted. 
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mark the onset of the first and second modes of instability of a solitary wave. A similar 
conclusion probably applies to the higher turning points. In table 5 we show the values 
of the first three turning points of the energy as predicted by equation (5.17), see 
Appendix C. The second and third turning points are given more accurately than the first. 
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9 
FIGURE 8. (a) The phase-speed c, (b) the wave height H ,  (c) the added mass M ,  ( d )  the impulse I ,  and 
(e) the total energy E, as functions of 9 for steep waves (0.8 < 9 <, 1). Full curve corresponds to the 
asymptotic expression (5.1). Plotted points correspond to the integral-equation calculations by 
Tanaka (1995). 
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1.2915 

C 

1.2910 

0.974 

E 

0.98 0.99 1 .oo 0.98 0.99 1 .oo 
7 7 

FIGURE 9. (a) Enlargement of figure 8(u), showing the first minimum of c.  (b) Enlargement of 
figure 8(e) ,  showing the first minimum of E. 

n 11 E H 

1 1st max 0.891 6 1.005 9 0.7824 
2 1st min 0.99423 0.97227 0.83027 
3 2ndmax 0.99969 0.97269 0.83305 

TABLE 5. Stationary values of the total energy E 

7. Conclusions 
We have shown that integral properties of steep solitary waves behave in an 

oscillatory manner as they approach the limiting configuration, just as was found 
previously by Longuet-Higgins & Fox (1977, 1978) for gravity waves in deep water. In 
fact the asymptotic theory of the ‘almost-highest wave’ is evidently applicable to 
steady progressive waves in water of arbitrary, uniform depth, though in any particular 
case the details must be worked out separately. 

The constants in the asymptotic formulae for the phase speed, mass, momentum and 
energy of the solitary wave which were given by Fox (1977) were accurate to no more 
than one decimal place. However, knowing the form of the solution we have been able 
to test the accuracy of the recent numerical calculations by Tanaka (1995) and to use 
these calculations to evaluate the constants in the asymptotic formulae to at least two 
decimal places. 

The verification of the accuracy has been assisted by the use of certain identical 
relations between the constants as pointed out in 96. Each of the quantities AC, AH, 
AZ, etc. is represented by a two-dimensional vector, and the relations between them are 
such that when any two vectors are given the rest are linearly dependent on them. 

The asymptotic formulae enable the turning points in each of the integral properties 
(as functions of the wave steepness) to be determined accurately. Of special interest are 
the turning points in the energy density E ;  the nth turning-point in E is the starting 
point for a new normal mode of instability of the crest of the wave, as was shown 
numerically by Tanaka (1986, 1995) in the cases n = 1 and 2 respectively. Indeed for 
the solitary wave these ‘crest instabilities’, for general n, appear to be the only types 
possible. 
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Appendix A. Derivation of equation (2.29) 
The last group of terms in equation (2.15) is designed to give the required form (2.9) 

as x + 0, with all the x-’/”’’ behaviour included in the B’ term. However the presence 
of a power series in 5 multiplying the leading-order (1 - <2)213 term in (2.15) will in 
general give rise to x5l3 terms which are very close in behaviour to the B’ term. To avoid 
this, we therefore impose a condition to suppress these terms by insisting that, if 

(1 - <2)2/3[C”c( 1 + <z)zmin + (a,  c+ a, c3 + a3 y5 + . . .)] = x2/3 F( 2) (A 1) 

then 

Evaluation of this derivative requires an expression for the second-order behaviour of 
(<- 1) with x obtained from equation (2.2). This is 

Using this expression we find that 

F ( x )  = const. x ~ [ C ” ( l + ~ 2 ) z m ~ n + ( a o + a , ~ 2 + a 2 ~ 4 +  ...)I (A4) 

whose derivative at x = 0 gives us equation (2.29). 

Appendix B. Definition of the function 9 ( w )  in equation (4.6) 

9 ( w )  = (1 - w ) - ~ P  [(ip ++) 2w(d0 + d, w + d, w2 + . . .) 4 
n(l + w )  

+ (1 - W )  (do +dl W +  . . .) + 2 ~ ( 1 -  W )  (d, + 2d2 
w + . . .)] -&( 1 - w)7/3 

(1-w)(1+w)2”o/x--1 1 
x rt 

- 2 4 1  -0) (1 -w)(1 +w)Zmo/n-l. J 
Appendix C. Calculation of turning points 

Any quantity of the form 

f(e) - f ,  + Ae3 cos ( v  In e + B) 

tan(v1ns-B) = 3 / v .  
has a turning point when 



Asymptotic theory for the almost-highest solitary wave 19 

Hence 

where n is a positive integer, and 

The corresponding value off is 

vlns = 0.95051 +B-nn, 

8 = 1.558 ( 1  .594)B(0.2308)". 

f =fo+( - l)%-' 0.5813Ae3. 
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